下列何者可抑制癌細胞之topoisomerase ii進而抑制細胞週期於late s-g2 phase

專技◆護理師◆基礎醫學 (包括生理學,病理學,藥理學,微生物學,免疫學)題庫下載題庫

上一題

  • 查單字:關

63 下列何者可抑制癌細胞之 topoisomerase II,進而抑制細胞周期於 late S-G2 phase?
(A) cyclophosphamide
(B) vinblastine
(C) gefitinib
(D) etoposide

  • 討論
  • 下列何者可抑制癌細胞之topoisomerase ii進而抑制細胞週期於late s-g2 phase
    私人筆記( 2 )

最佳解!

Miay Wu 大一上 (2017/07/22)

etoposide可以抑制topois........

(內容隱藏中)

查看隱藏文字

下列何者可抑制癌細胞之topoisomerase ii進而抑制細胞週期於late s-g2 phase

2F

ej8 je8 小六下 (2017/07/25)

第一型:可利用愛萊諾迪肯(irin...

(內容隱藏中)

查看隱藏文字

下列何者可抑制癌細胞之topoisomerase ii進而抑制細胞週期於late s-g2 phase

3F

10902應屆上榜護理師 國三下 (2020/05/26)

Etoposide(八角蓮生物鹼),可抑制癌細胞Topoisomerase II(拓墣異構酶II)使DNA 無法複製,屬S-G2專一性藥物。

(A) cyclophosphamide其細胞毒性作用為烴基性代謝物和DNA起交互作用而來,使DNA雙股產生錯誤的交叉連結對於細胞週期階段不具特異性。

(B) vinblastine為長春花鹼,作用於有絲分裂時的紡錘絲。

(C) Gefitinib (Iressa®, ZD1839)為 一小分子的EGFR tyrosin kinase 抑制劑,藉由專一性的抑制EGFR而減緩腫瘤細胞的生長。

  • 查單字:關

懸賞詳解

專技◆護理師◆基礎醫學 (包括生理學,病理學,藥理學,微生物學,免疫學)

33 在發生組織細胞傷害時,修復時最少出現纖維芽細胞(fibroblast)的是: (A)肺 (B)皮膚 (C)腦 (D)肝...

10 x
下列何者可抑制癌細胞之topoisomerase ii進而抑制細胞週期於late s-g2 phase

前往解題

懸賞詳解

專技◆護理師◆基礎醫學 (包括生理學,病理學,藥理學,微生物學,免疫學)

31.藥物經過phase II代謝時,最常和下列何種內生性物質形成共軛結合(conjugation)? (A)glucuronic acid (B)acetate (C)sulfate (D)glycine...

10 x
下列何者可抑制癌細胞之topoisomerase ii進而抑制細胞週期於late s-g2 phase

前往解題

為提供您最佳個人化且即時的服務,本網站透過使用"Cookies"記錄與存取您的瀏覽使用訊息。當您使用本網站,即表示您同意Cookies技術支援。更多資訊請參閱隱私權條款及Cookies說明。

登入

說明:本站使用開放授權登入。
開放授權(OAuth)是一個開放標準,允許用戶讓第三方應用(本站)存取該用戶在某一網站上儲存的資源(如頭像,名稱),而無需將使用者名稱和密碼提供給第三方應用,也無需在本站另行註冊。

1. Wang FS, Fan JG, Zhang Z, et al. The global burden of liver disease: the major impact of China. Hepatology. 2014;60(6):2099–108. doi: 10.1002/hep.v60.6.
[Wang FS, Fan JG, Zhang Z, et al. The global burden of liver disease: the major impact of China[J]. Hepatology, 2014, 60(6): 2099-108.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

3. Hasan SK, Siddiqi A, Nafees S, et al. Chemopreventive effect of 18beta-glycyrrhetinic acid via modulation of inflammatory markers and induction of apoptosis in human hepatoma cell line (HepG2) Mol Cell Biochem. 2016;416(1-2):169–77. doi: 10.1007/s11010-016-2705-2.
[Hasan SK, Siddiqi A, Nafees S, et al. Chemopreventive effect of 18beta-glycyrrhetinic acid via modulation of inflammatory markers and induction of apoptosis in human hepatoma cell line (HepG2) [J]. Mol Cell Biochem, 2016, 416(1-2): 169-77.] [PubMed] [CrossRef] [Google Scholar]

5. Tang ZH, Li T, Chang LL, et al. Glycyrrhetinic acid triggers a protective autophagy by activation of extracellular regulated protein kinases in hepatocellular carcinoma cells. J Agric Food Chem. 2014;62(49):11910–6. doi: 10.1021/jf503968k.
[Tang ZH, Li T, Chang LL, et al. Glycyrrhetinic acid triggers a protective autophagy by activation of extracellular regulated protein kinases in hepatocellular carcinoma cells[J]. J Agric Food Chem, 2014, 62(49): 11910-6.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Yan T, Wang H, Zhao M, et al. Glycyrrhizin protects against acetaminophen-induced acute liver injury via alleviating tumor necrosis factor alpha-mediated apoptosis. Drug Metab Dispos. 2016;44(5):720–31. doi: 10.1124/dmd.116.069419.
[Yan T, Wang H, Zhao M, et al. Glycyrrhizin protects against acetaminophen-induced acute liver injury via alleviating tumor necrosis factor alpha-mediated apoptosis[J]. Drug Metab Dispos, 2016, 44(5): 720-31.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Zhu J, Chen M, Chen N, et al. Glycyrrhetinic acid induces G1phase cell cycle arrest in human nonsmall cell lung cancer cells through endoplasmic reticulum stress pathway. Int J Oncol. 2015;46(3):981. doi: 10.3892/ijo.2015.2819.
[Zhu J, Chen M, Chen N, et al. Glycyrrhetinic acid induces G1phase cell cycle arrest in human nonsmall cell lung cancer cells through endoplasmic reticulum stress pathway[J]. Int J Oncol, 2015, 46(3): 981.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Gong M, Liu Y, Zhang J, et al. β-elemene inhibits cell proliferation by regulating the expression and activity of topoisomerases Ⅰ and Ⅱ alpha in human hepatocarcinoma HepG-2 cells. http://www.doc88.com/p-9032850519559.html. Biomed Res Int. 2015;153987
[Gong M, Liu Y, Zhang J, et al. β-elemene inhibits cell proliferation by regulating the expression and activity of topoisomerases Ⅰ and Ⅱ alpha in human hepatocarcinoma HepG-2 cells[J]. Biomed Res Int, 2015, 153987.] [PMC free article] [PubMed] [Google Scholar]

9. Nateewattana J, Dutta S, Reabroi S, et al. Induction of apoptosis in cholangiocarcinoma by an andrographolide analogue is mediated through topoisomerase Ⅱ alpha inhibition. https://www.sciencedirect.com/science/article/pii/S0014299913009199. Eur J Pharmacol. 2014;723(15):148.
[Nateewattana J, Dutta S, Reabroi S, et al. Induction of apoptosis in cholangiocarcinoma by an andrographolide analogue is mediated through topoisomerase Ⅱ alpha inhibition[J]. Eur J Pharmacol, 2014, 723(15): 148.] [PubMed] [Google Scholar]

10. Panvichian R, Tantiwetrueangdet A, Angkathunyakul N, et al. TOP2A amplification and overexpression in hepatocellular carcinoma tissues. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324886/ Biomed Res Int. 2015:381602.
[Panvichian R, Tantiwetrueangdet A, Angkathunyakul N, et al. TOP2A amplification and overexpression in hepatocellular carcinoma tissues[J]. Biomed Res Int, 2015, 381602.] [PMC free article] [PubMed] [Google Scholar]

11. Chen G, Templeton D, Suttle DP, et al. Ras stimulates DNA topoisomerase Ⅱ alpha through MEK: a link between oncogenic signaling and a therapeutic target. Oncogene. 1999;18(50):7149–60. doi: 10.1038/sj.onc.1203149.
[Chen G, Templeton D, Suttle DP, et al. Ras stimulates DNA topoisomerase Ⅱ alpha through MEK: a link between oncogenic signaling and a therapeutic target[J]. Oncogene, 1999, 18(50): 7149-60.] [PubMed] [CrossRef] [Google Scholar]

12. Hassan T, Badr M, Sakr H, et al. Chemotherapy-induced neutropenia among pediatric cancer patients in egypt: risks and consequences. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998081/ Mol Clin Oncol. 2015;5(3):300–6.
[Hassan T, Badr M, Sakr H, et al. Chemotherapy-induced neutropenia among pediatric cancer patients in egypt: risks and consequences [J]. Mol Clin Oncol, 2015, 5(3): 300-6.] [PMC free article] [PubMed] [Google Scholar]

13. Bhosle J, Kiakos K Fau -Porter ACG, Porter Ac Fau -Wu J, et al. Treatment with gefitinib or lapatinib induces drug resistance through downregulation of topoisomerase Ⅱ alpha expression. Mol Cancer Ther. 2013;12(12):2897. doi: 10.1158/1535-7163.MCT-12-1049.
[Bhosle J, Kiakos K Fau -Porter ACG, Porter Ac Fau -Wu J, et al. Treatment with gefitinib or lapatinib induces drug resistance through downregulation of topoisomerase Ⅱ alpha expression[J]. Mol Cancer Ther, 2013, 12(12): 2897.] [PubMed] [CrossRef] [Google Scholar]

14. Harkin LF, Gerrelli D, Gold Diaz DC, et al. Distinct expression patterns for type Ⅱ topoisomerases ⅡA and ⅡB in the early foetal human telencephalon. J Anat. 2016;228(3):452–63. doi: 10.1111/joa.2016.228.issue-3.
[Harkin LF, Gerrelli D, Gold Diaz DC, et al. Distinct expression patterns for type Ⅱ topoisomerases ⅡA and ⅡB in the early foetal human telencephalon[J]. J Anat, 2016, 228(3): 452-63.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Wang J, Xu B Fau -Yuan P, Yuan P Fau -Zhang P, et al. TOP2A amplification in breast cancer is a predictive marker of anthracycline-based neoadjuvant chemotherapy efficacy. https://link.springer.com/article/10.1007/s10549-012-2167-5. Breast Cancer Ras Treat. 2012;135(2):338.
[Wang J, Xu B Fau -Yuan P, Yuan P Fau -Zhang P, et al. TOP2A amplification in breast cancer is a predictive marker of anthracycline-based neoadjuvant chemotherapy efficacy[J]. Breast Cancer Ras Treat, 2012, 135(2): 338.] [PubMed] [Google Scholar]

17. Pilati P, Nitti D, Mocellin S. Cancer resistance to type Ⅱ topoisomerase inhibitors. Curr Med Chem. 2012;19(23):3900–6. doi: 10.2174/092986712802002473.
[Pilati P, Nitti D, Mocellin S. Cancer resistance to type Ⅱ topoisomerase inhibitors[J]. Curr Med Chem, 2012, 19(23): 3900-6.] [PubMed] [CrossRef] [Google Scholar]

18. Papiez MA. The effect of quercetin on oxidative DNA damage and myelosuppression induced by etoposide in bone marrow cells of rats. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-7ca0e175-b0a6-49b7-bf4d-5e7ed1399311. Acta Biochim Pol. 2014;61(7):7–11.
[Papiez MA. The effect of quercetin on oxidative DNA damage and myelosuppression induced by etoposide in bone marrow cells of rats[J]. Acta Biochim Pol, 2014, 61(7): 7-11.] [PubMed] [Google Scholar]

20. Gong G, Xiang L, Yuan L, et al. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusioninduced inflammation, oxidative stress, and apoptosis in rats. PLoS One. 2014;9(3):e89450. doi: 10.1371/journal.pone.0089450.
[Gong G, Xiang L, Yuan L, et al. Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusioninduced inflammation, oxidative stress, and apoptosis in rats[J]. PLoS One, 2014, 9(3): e89450.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Harada S. The broad anti-viral agent glycyrrhizin directly modulates the fluidity of plasma membrane and HIV-1 envelope. http://www.biochemj.org/content/392/1/191. Biochem J. 2005;392(Pt 1):191–9.
[Harada S. The broad anti-viral agent glycyrrhizin directly modulates the fluidity of plasma membrane and HIV-1 envelope[J]. Biochem J, 2005, 392(Pt 1): 191-9.] [PMC free article] [PubMed] [Google Scholar]

22. Wang YM, Du GQ. Glycyrrhizic acid prevents enteritis through reduction of NFkappaB p65 and p38MAPK expression in rat. Mol Med Rep. 2016;13(4):3639. doi: 10.3892/mmr.2016.4981.
[Wang YM, Du GQ. Glycyrrhizic acid prevents enteritis through reduction of NFkappaB p65 and p38MAPK expression in rat[J]. Mol Med Rep 2016, 13(4): 3639.] [PubMed] [CrossRef] [Google Scholar]

23. Takeda S, Ishthara K, Wakui Y, et al. Bioavailability study of glycyrrhetic acid after oral administration of glycyrrhizin in rats; relevance to the intestinal bacterial hydrolysis. J Pharm Pharmacol. 1996;48(9):902–5. doi: 10.1111/jphp.1996.48.issue-9.
[Takeda S, Ishthara K, Wakui Y, et al. Bioavailability study of glycyrrhetic acid after oral administration of glycyrrhizin in rats; relevance to the intestinal bacterial hydrolysis[J]. J Pharm Pharmacol, 1996, 48(9): 902-5.] [PubMed] [CrossRef] [Google Scholar]

24. Kim DH, Hong SW, Kim BT, et al. Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities. Arch Pharm Res. 2000;23(2):172–7. doi: 10.1007/BF02975509.
[Kim DH, Hong SW, Kim BT, et al. Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities [J]. Arch Pharm Res, 2000, 23(2): 172-7.] [PubMed] [CrossRef] [Google Scholar]

25. Cheng M, Gao X, Wang Y, et al. Synthesis of glycyrrhetinic acidmodified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo. Mar Drugs. 2013;11(9):3517–36. doi: 10.3390/md11093517.
[Cheng M, Gao X, Wang Y, et al. Synthesis of glycyrrhetinic acidmodified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo[J]. Mar Drugs, 2013, 11(9): 3517-36.] [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Tang ZH, Zhang LL, Li T, et al. Glycyrrhetinic acid induces cytoprotective autophagy via the inositol-requiring enzyme 1alphac-Jun N-terminal kinase cascade in non-small cell lung cancer cells. http://europepmc.org/articles/PMC4791276. Oncotarget. 2015;6(41):43911–26.
[Tang ZH, Zhang LL, Li T, et al. Glycyrrhetinic acid induces cytoprotective autophagy via the inositol-requiring enzyme 1alphac-Jun N-terminal kinase cascade in non-small cell lung cancer cells [J]. Oncotarget, 2015, 6(41): 43911-26.] [PMC free article] [PubMed] [Google Scholar]

27. Rossi T, Castelli M, Zandomeneghi G, et al. Selectivity of action of glycyrrhizin derivatives on the growth of MCF-7 and HEP-2 cells. https://www.ncbi.nlm.nih.gov/pubmed/14666682. Anticancer Res. 2003;23(5A):3813–8.
[Rossi T, Castelli M, Zandomeneghi G, et al. Selectivity of action of glycyrrhizin derivatives on the growth of MCF-7 and HEP-2 cells [J]. Anticancer Res, 2003, 23(5A): 3813-8.] [PubMed] [Google Scholar]

28. Xu R, Xiao Q, Cao Y, et al. Comparison of the exposure of glycyrrhizin and its metabolites and the pseudoaldosteronism after intravenous administration of alpha-and beta-glycyrrhizin in rat. Drug Res (Stuttg) 2013;63(12):620–4. doi: 10.1055/s-00023610.
[Xu R, Xiao Q, Cao Y, et al. Comparison of the exposure of glycyrrhizin and its metabolites and the pseudoaldosteronism after intravenous administration of alpha-and beta-glycyrrhizin in rat [J]. Drug Res (Stuttg), 2013, 63(12): 620-4.] [PubMed] [CrossRef] [Google Scholar]